If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/6t^2-4=0
Domain of the equation: 6t^2!=0We multiply all the terms by the denominator
t^2!=0/6
t^2!=√0
t!=0
t∈R
-4*6t^2+1=0
Wy multiply elements
-24t^2+1=0
a = -24; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-24)·1
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*-24}=\frac{0-4\sqrt{6}}{-48} =-\frac{4\sqrt{6}}{-48} =-\frac{\sqrt{6}}{-12} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*-24}=\frac{0+4\sqrt{6}}{-48} =\frac{4\sqrt{6}}{-48} =\frac{\sqrt{6}}{-12} $
| 4a=0.16 | | 4/7y-2=4y-6 | | -5(4x+7)-(x+4)=-60 | | F(x)=-5x+12 | | 2x+9/x=0 | | 72(x+1)=144 | | 6+(3-x)/2=1 | | (4+x)/3=-6 | | 3(2x-8=-24+6x | | -234=4+7(5n+1) | | 1/2z+1/2z=z+1 | | 16=3x-9+2x | | .5z+.5z=z+1 | | 11(v-7)=88 | | (4+x)3=-6 | | 89=-6(6m+3)-1 | | 4z-9=3.5z-9 | | 15/28=54x | | 6+w/5=10 | | 3z-1=1-3z | | 5x–2=8 | | 4y+6=36y-4 | | x=1,5 | | 14(x+11)=238 | | 23x+1223=9x+223 | | x-1/2=x-5/4 | | 144=8(-6+6p) | | 0=3x^2-12x-18 | | 2x-(x+2)+1=18 | | 9(y-8)=32 | | 7(5r+7)-7r=-147 | | -5r–9r=-56 |